Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Zhejiang Univ Sci B ; 24(11): 957-973, 2023 Sep 27.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37961799

RESUMEN

Over the past decade, dramatic progress has been made in dental research areas involving laser therapy. The photobiomodulatory effect of laser light regulates the behavior of periodontal tissues and promotes damaged tissues to heal faster. Additionally, photobiomodulation therapy (PBMT), a non-invasive treatment, when applied in orthodontics, contributes to alleviating pain and reducing inflammation induced by orthodontic forces, along with improving tissue healing processes. Moreover, PBMT is attracting more attention as a possible approach to prevent the incidence of orthodontically induced inflammatory root resorption (OIIRR) during orthodontic treatment (OT) due to its capacity to modulate inflammatory, apoptotic, and anti-antioxidant responses. However, a systematic review revealed that PBMT has only a moderate grade of evidence-based effectiveness during orthodontic tooth movement (OTM) in relation to OIIRR, casting doubt on its beneficial effects. In PBMT-assisted orthodontics, delivering sufficient energy to the tooth root to achieve optimal stimulation is challenging due to the exponential attenuation of light penetration in periodontal tissues. The penetration of light to the root surface is another crucial unknown factor. Both the penetration depth and distribution of light in periodontal tissues are unknown. Thus, advanced approaches specific to orthodontic application of PBMT need to be established to overcome these limitations. This review explores possibilities for improving the application and effectiveness of PBMT during OTM. The aim was to investigate the current evidence related to the underlying mechanisms of action of PBMT on various periodontal tissues and cells, with a special focus on immunomodulatory effects during OTM.


Asunto(s)
Terapia por Luz de Baja Intensidad , Ortodoncia , Resorción Radicular , Humanos , Inflamación , Terapia por Luz de Baja Intensidad/efectos adversos , Resorción Radicular/etiología , Resorción Radicular/terapia , Técnicas de Movimiento Dental
2.
J Zhejiang Univ Sci B ; : 1-17, 2023 Sep 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37767746

RESUMEN

Over the past decade, dramatic progress has been made in dental research areas involving laser therapy. The photobiomodulatory effect of laser light regulates the behavior of periodontal tissues and promotes damaged tissues to heal faster. Additionally, photobiomodulation therapy (PBMT), a non-invasive treatment, when applied in orthodontics, contributes to alleviating pain and reducing inflammation induced by orthodontic forces, along with improving tissue healing processes. Moreover, PBMT is attracting more attention as a possible approach to prevent the incidence of orthodontically induced inflammatory root resorption (OIIRR) during orthodontic treatment (OT) due to its capacity to modulate inflammatory, apoptotic, and anti-antioxidant responses. However, a systematic review revealed that PBMT has only a moderate grade of evidence-based effectiveness during orthodontic tooth movement (OTM) in relation to OIIRR, casting doubt on its beneficial effects. In PBMT-assisted orthodontics, delivering sufficient energy to the tooth root to achieve optimal stimulation is challenging due to the exponential attenuation of light penetration in periodontal tissues. The penetration of light to the root surface is another crucial unknown factor. Both the penetration depth and distribution of light in periodontal tissues are unknown. Thus, advanced approaches specific to orthodontic application of PBMT need to be established to overcome these limitations. This review explores possibilities for improving the application and effectiveness of PBMT during OTM. The aim was to investigate the current evidence related to the underlying mechanisms of action of PBMT on various periodontal tissues and cells, with a special focus on immunomodulatory effects during OTM.

3.
Bioengineering (Basel) ; 10(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36978762

RESUMEN

Regenerative endodontic procedures (REPs) were used to recover the dental pulp's vitality in order to avoid the undesirable outcomes of conventional endodontic treatment and to promote dentinal formation, especially for immature permanent teeth. Photobiomodulation therapy (PBMT) exhibits photobiological and photochemical effects for improving the root canal's environmental conditions by compensating for oxidative stress and increasing the blood supply to implanted stem cells and improving their survival. Basic research has revealed that PBMT can modulate human dental pulp stem cells' (hDPSCs) differentiation, proliferation, and activity, and subsequent tissue activation. However, many unclear points still remain regarding the mechanisms of action induced by PBMT in REPs. Therefore, in this review, we present the applications of laser and PBMT irradiation to the procedures of REPs and in endodontics. In addition, the effects of PBMT on the regenerative processes of hDPSCs are reviewed from biochemical and cytological perspectives on the basis of the available literature. Furthermore, we consider the feasibility of treatment in which PBMT irradiation is applied to stem cells, including dental pulp stem cells, and we discuss research that has reported on its effect.

4.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834533

RESUMEN

Orthodontic tooth movement is a complex periodontal remodeling process triggered by compression that involves sterile inflammation and immune responses. Macrophages are mechanically sensitive immune cells, but their role in orthodontic tooth movement is unclear. Here, we hypothesize that orthodontic force can activate macrophages, and their activation may be associated with orthodontic root resorption. After force-loading and/or adiponectin application, the migration function of macrophages was tested via scratch assay, and Nos2, Il1b, Arg1, Il10, ApoE, and Saa3 expression levels were detected using qRT-PCR. Furthermore, H3 histone acetylation was measured using an acetylation detection kit. The specific inhibitor of H3 histone, I-BET762, was deployed to observe its effect on macrophages. In addition, cementoblasts were treated with macrophage-conditioned medium or compression force, and OPG production and cellular migration were measured. We further detected Piezo1 expression in cementoblasts via qRT-PCR and Western-blot, and its effect on the force-induced impairment of cementoblastic functions was also analyzed. Compressive force significantly inhibited macrophage migration. Nos2 was up-regulated 6 h after force-loading. Il1b, Arg1, Il10, Saa3, and ApoE increased after 24 h. Meanwhile, higher H3 histone acetylation was detected in the macrophages subjected to compression, and I-BET762 dampened the expression of M2 polarization markers (Arg1 and Il10). Lastly, even though the activated macrophage-conditioned medium showed no effect on cementoblasts, compressive force directly impaired cementoblastic function by enhancing mechanoreceptor Piezo1. Compressive force activates macrophages; specifically, it causes M2 polarization via H3 histone acetylation in the late stage. Compression-induced orthodontic root resorption is macrophage-independent, but it involves the activation of mechanoreceptor Piezo1.


Asunto(s)
Histonas , Resorción Radicular , Humanos , Interleucina-10 , Medios de Cultivo Condicionados , Macrófagos , Canales Iónicos
5.
Oral Dis ; 29(3): 1172-1183, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34861742

RESUMEN

Growth arrest-specific protein 6 (GAS-6) regulates immunomodulatory and inflammatory mechanisms in periodontium and may participate in obesity predisposition. This study aimed to determine whether GAS-6 is associated with the homeostasis of periodontal ligament (SV-PDL) cells in the presence of adipokines or compressive forces. The SV-PDL cell line was used. Western blots were employed for TAM receptors detection. Cells were stimulated using different concentrations of GAS-6. The migration, viability, and proliferation were measured by a standard scratch test, MTS assay, and immunofluorescent staining. The mRNA expression was analyzed by RT-PCR. Release of TGF-ß1, GAS-6, and Axl were verified by ELISA. Western blot shows that TAM receptors are expressed in SV-PDL cells. GAS-6 has a promoting effect on cell migration and proliferation. RT-PCR analysis showed that GAS-6 induces Collagen-1, Collagen-3, Periostin, and TGF-ß1 mRNA expression whereas it reduces Caspase-3, Caspase-8, Caspase-9, and IL-6 mRNA expression. Further, secreted GAS-6 in SV-PDL is reduced in response to both compressive forces and leptin and upregulated by IL-6. Additionally, ADAM-10 inhibition reduces GAS-6 and Axl release on SV-PDL cells. TAM receptors especially Axl are identified as the receptors of GAS-6. GAS-6/TAM interactions contribute to periodontal ligament cells homeostasis. Leptin inhibits the GAS-6 release independently of ADAM-10 metalloprotease.


Asunto(s)
Ligamento Periodontal , Factor de Crecimiento Transformador beta1 , Factor de Crecimiento Transformador beta1/metabolismo , Ligamento Periodontal/metabolismo , Leptina/farmacología , Interleucina-6/metabolismo , Colágeno/farmacología , Homeostasis , ARN Mensajero/metabolismo , Células Cultivadas
6.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36232704

RESUMEN

Orthodontically induced inflammatory root resorption (OIIRR) is considered an undesired and inevitable complication induced by orthodontic forces. This inflammatory mechanism is regulated by immune cells that precede orthodontic tooth movement (OTM) and can influence the severity of OIIRR. The process of OIIRR is based on an immune response. On some occasions, the immune system attacks the dentition by inflammatory processes during orthodontic treatment. Studies on the involvement of the PD-1/PD-L1 immune checkpoint have demonstrated its role in evading immune responses, aiming to identify possible novel therapeutic approaches for periodontitis. In the field of orthodontics, the important question arises of whether PD-L1 has a role in the development of OIIRR to amplify the amount of resorption. We hypothesize that blocking of the PD-L1 immune checkpoint could be a suitable procedure to reduce the process of OIIRR during orthodontic tooth movement. This review attempts to shed light on the regulation of immune mechanisms and inflammatory responses that could influence the pathogenesis of OIIRR and to acquire knowledge about the role of PD-L1 in the immunomodulation involved in OIIRR. Possible clinical outcomes will be discussed in relation to PD-L1 expression and immunologic changes throughout the resorption process.


Asunto(s)
Antígeno B7-H1 , Resorción Radicular , Técnicas de Movimiento Dental , Antígeno B7-H1/inmunología , Humanos , Factores Inmunológicos , Receptor de Muerte Celular Programada 1 , Resorción Radicular/etiología , Resorción Radicular/inmunología , Técnicas de Movimiento Dental/efectos adversos , Técnicas de Movimiento Dental/métodos
7.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35955469

RESUMEN

Ciliary neurotrophic factor (CNTF) was identified as a survival factor in various types of peripheral and central neurons, glia and non-neural cells. At present, there is no available data on the expression and localization of CNTF-receptors in cementoblasts as well as on the role of exogenous CNTF on this cell line. The purpose of this study was to determine if cementoblasts express CNTF-receptors and analyze the mechanism of its apoptotic regulation effects on cementoblasts. OCCM-30 cementoblasts were cultivated and stimulated kinetically using CNTF protein (NBP2-35168, Novus Biologicals). Quantified transcriptional (RT-qPCR) and translational (WB) products of CNTFRα, IL-6Rα (CD126), LIFR, p-GP130, GP130, p-ERK1/2, ERK1/2, Caspase-8, -9, -3 and cleaved-caspase-3 were evaluated. Immunofluorescence (IF) staining was applied to visualize the localization of the CNTF-receptors within cells. The apoptosis ratio was measured with an Annexin-V FITC/PI kit. The ERK1/2 antagonist (FR180204, Calbiochem) was added for further investigation by flow cytometry analysis. The CNTF-receptor complex (CNTFRα, LIFR, GP130) was functionally up-regulated in cementoblasts while cultivated with exogenous CNTF. CNTF significantly attenuated cell viability and proliferation for long-term stimulation. Flow cytometry analysis shows that CNTF enhanced the apoptosis after prolonged duration. However, after only a short-term period, CNTF halts the apoptosis of cementoblasts. Further studies revealed that CNTF activated phosphorylated GP130 and the anti-apoptotic molecule ERK1/2 signaling to participate in the regulation of the apoptosis ratio of cementoblasts. In conclusion, CNTF elicited the cellular functions through a notable induction of its receptor complex in cementoblasts. CNTF has an inhibitory effect on the cementoblast homeostasis. These data also elucidate a cellular mechanism for an exogenous CNTF-triggered apoptosis regulation in a mechanism of ERK1/2 and caspase signaling and provides insight into the complex cellular responses induced by CNTF in cementoblasts.


Asunto(s)
Subunidad alfa del Receptor del Factor Neurotrófico Ciliar , Factor Neurotrófico Ciliar , Apoptosis , Caspasas/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Subunidad alfa del Receptor del Factor Neurotrófico Ciliar/metabolismo , Receptor gp130 de Citocinas/metabolismo , Cemento Dental/metabolismo , Sistema de Señalización de MAP Quinasas , Receptor de Factor Neurotrófico Ciliar/metabolismo
8.
Cells ; 11(15)2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35954195

RESUMEN

Recent studies have revealed that hypoxia alters the PD-L1 expression in periodontal cells. HIF-1α is a key regulator for PD-L1. As hypoxia presents a hallmark of an orthodontically induced microenvironment, hypoxic stimulation of PD-L1 expression may play vital roles in immunorthodontics and orthodontically induced inflammatory root resorption (OIIRR). This study aims to investigate the hypoxic regulation of PD-L1 in cementoblasts, and its interaction with hypoxia-induced HIF-1α expression. The cementoblast (OCCM-30) cells (M. Somerman, NIH, NIDCR, Bethesda, Maryland) were cultured in the presence and absence of cobalt (II) chloride (CoCl2). Protein expression of PD-L1 and HIF-1α as well as their gene expression were evaluated by Western blotting and RT-qPCR. Immunofluorescence was applied to visualize the localization of the proteins within cells. The HIF-1α inhibitor (HY-111387, MedChemExpress) was added, and CRISPR/Cas9 plasmid targeting HIF-1α was transferred for further investigation by flow cytometry analysis. Under hypoxic conditions, cementoblasts undergo an up-regulation of PD-L1 expression at protein and mRNA levels. Silencing of HIF-1α using CRISPR/Cas9 indicated a major positive correlation with HIF-1α in regulating PD-L1 expression. Taken together, these findings show the influence of hypoxia on PD-L1 expression is modulated in a HIF-1α dependent manner. The HIF-1α/PD-L1 pathway may play a role in the immune response of cementoblasts. Thus, combined HIF-1α/PD-L1 inhibition could be of possible therapeutic relevance for OIIRR prevention.


Asunto(s)
Antígeno B7-H1 , Cemento Dental , Antígeno B7-H1/metabolismo , Hipoxia de la Célula , Humanos , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factores Inmunológicos
9.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36012576

RESUMEN

In animal models, the administration of ciliary neurotrophic factor (CNTF) was demonstrated to reduce bone mass and to participate in bone remodeling. Cementoblasts, a cell type embedded in the cementum, are the main cells to produce and mineralize the extracellular matrix. The effect of CNTF on cementoblasts has not yet been addressed. Thus, the goal of this in vitro study was to investigate possible influences of exogenous CNTF on cementogenesis, as well as autophagy regulation and subsequent mechanisms in cementoblasts. Cementoblasts (OCCM-30) were stimulated with exogenous CNTF. Alizarin Red staining was performed to analyze the functional differentiation (mineralization) of OCCM-30 cells. The release of OPG was quantified by ELISA. The expression of cementogenesis markers (RUNX-2, OCN, BMP-7, BSP, and SPON-2) was evaluated by RT-qPCR. Western blotting (WB) was performed for the protein expression of STAT3, COX-2, SHP-2, cPLAα, cPLAß; ERK1/2, P38, and JNK. The autophagic flux was assessed using WB and RT-qPCR analysis of LC3A/B, Beclin-1, and Atg-5, and the autophagosome was investigated by immunofluorescence staining (IF). The ERK1/2 (FR180204) or STAT3 (sc-202818) antagonist was added, and the cellular response was analyzed using flow cytometry. Exogenous CNTF significantly attenuated mineralized nodule formation, impaired OPG release, and downregulated the mRNA levels of RUNX-2, OCN, BMP-7, and BSP. Moreover, CNTF induced the phosphorylation of STAT3 and activated a transient activation of SHP-2, cPLAß, ERK1/2, P38, and JNK protein. CNTF also induced autophagosome formation and promoted autophagy-associated gene and protein expressions. Additionally, the inhibition of ERK1/2 or STAT3 reversed a CNTF-induced mineralization impairment and had regulatory effects on CNTF-induced autophagosome formation. Our data revealed that CNTF acts as a potent inhibitor of cementogenesis, and it can trigger autophagy, in part by ERK1/2 and STAT3 commitment in the cementoblasts. Thus, it may play an important role in inducing or facilitating inflammatory root resorption during orthodontic tooth movement.


Asunto(s)
Factor Neurotrófico Ciliar , Cemento Dental , Animales , Autofagia , Proteína Morfogenética Ósea 7/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/farmacología , Cemento Dental/metabolismo , Osteocalcina/metabolismo
10.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805974

RESUMEN

Patients with periodontitis undergoing orthodontic therapy may suffer from undesired dental root resorption. The purpose of this in vitro study was to investigate the molecular mechanisms resulting in PD-L1 expression of cementoblasts in response to infection with Porphyromonas gingivalis (P. gingivalis) peptidoglycan (PGN) and compressive force (CF), and its interaction with hypoxia-inducible factor (HIF)-1α molecule: The cementoblast (OCCM-30) cells were kinetically infected with various concentrations of P. gingivalis PGN in the presence and absence of CF. Western blotting and RT-qPCR were performed to examine the protein expression of PD-L1 and HIF-1α as well as their gene expression. Immunofluorescence was applied to visualize the localization of these proteins within cells. An HIF-1α inhibitor was added for further investigation of necroptosis by flow cytometry analysis. Releases of soluble GAS-6 were measured by ELISA. P. gingivalis PGN dose dependently stimulated PD-L1 upregulation in cementoblasts at protein and mRNA levels. CF combined with P. gingivalis PGN had synergistic effects on the induction of PD-L1. Blockade of HIF-1α inhibited the P. gingivalis PGN-inducible PD-L1 protein expression under compression, indicating an HIF-1α dependent regulation of PD-L1 induction. Concomitantly, an HIF-1α inhibitor decreased the GAS-6 release in the presence of CF and P. gingivalis PGN co-stimulation. The data suggest that PGN of P. gingivalis participates in PD-L1 up-regulation in cementoblasts. Additionally, the influence of compressive force on P. gingivalis PGN-induced PD-L1 expression occurs in HIF-1α dependently. In this regard, HIF-1α may play roles in the immune response of cementoblasts via immune-inhibitory PD-L1. Our results underline the importance of molecular mechanisms involved in bacteria-induced periodontics and root resorption.


Asunto(s)
Antígeno B7-H1 , Resorción Radicular , Antígeno B7-H1/biosíntesis , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Cemento Dental/inmunología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Peptidoglicano/inmunología , Porphyromonas gingivalis/metabolismo , Resorción Radicular/genética , Resorción Radicular/inmunología
11.
BMC Res Notes ; 15(1): 57, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35168676

RESUMEN

OBJECTIVE: RT-qPCR is a reliable method for gene expression analysis, but the accuracy of the quantitative data depends on the appropriate selection of reference genes. A Co-culture system consisting of periodontal ligament cells (SV-PDL) and cementoblasts (OCCM-30) to investigate the crosstalk between these two cell lines under orthodontic condition is essential for experimental orthodontic setups in-vitro. Therefore, we aimed to identify a set of reliable reference genes suitable for RT-qPCR studies for prospective co-culture systems of OCCM-30 and SV-PDL cells. RESULTS: The results demonstrated that PPIB, GUSB and RPLP0 turned out to be the three most stable reference genes for OCCM-30 in the co-culture system, while PPIB, POLR2A and RPLP0 have the three highest rankings for SV-PDL cells in the co-culture system. The most stable gene combination were PPIB and POLR2A in the co-culture system. In conclusion, PPIB is overall the most stably expressed reference gene for OCCM-30 or SV-PDL cell line in the system. The combination of PPIB and POLR2A as reference genes are indicated to be the potential and mandatory to obtain accurate quantification results for normalizing RT-qPCR data in genes of interest expression in these two cell lines co-culture systems.


Asunto(s)
Cemento Dental , Ligamento Periodontal , Animales , Técnicas de Cocultivo , Ratones , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia
12.
Front Biosci (Landmark Ed) ; 27(2): 54, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35226997

RESUMEN

Orthodontic tooth movement (OTM) requires the orthodontic forces (compressive and tensile strain) to subject to the periodontal ligament and mechanosensory cells in the periodontium and to achieve mechanotransduction by mechanoreceptors. In the context of OTM, a diverse array of signaling pathways are activated in mechanosensory cells that modulate bone resorption and formation in in vitro and in vivo models. The underlying molecular signal transduction, such as MAPK and ß-Catenin signaling, that is involved in OTM, has been partially identified. It includes, but is not limited to genes and proteins which are related to osteogenesis, osteoclastogenesis, cementogenesis and inflammation. However, the interactive relation of ß-Catenin and MAPK signaling remains ambiguous and diverse cross-talks are acting with each other. In this comprehensive text, we review the biology of OTM and reported experimental results on the activation/inhibition of these two signaling pathways during OTM. Here, we also focus on the implications and interplays between the MAPK and ß-Catenin signaling in mechanosensory cells in response to orthodontic forces. Finally, the potential of further investigation strategies aimed at supporting orthodontic interventions are discussed. This review provides a conceptual framework for more comprehensive knowledge about signaling interaction during OTM.


Asunto(s)
Técnicas de Movimiento Dental , beta Catenina , Mecanotransducción Celular , Osteoclastos/metabolismo , Osteogénesis/fisiología , Ligamento Periodontal/metabolismo , Transducción de Señal , Técnicas de Movimiento Dental/métodos , beta Catenina/metabolismo
13.
Front Biosci (Landmark Ed) ; 27(2): 62, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35227005

RESUMEN

BACKGROUNDS: Dental avulsion due to trauma, especially in young patients, is a worldwide problem, requiring tooth replacement. Delayed replantation could cause tooth loss when the cementum is severely damaged. A small number of studies has reported that photobiomodulation (PBM) therapy using Er: YAG laser irradiation activates cellular signaling responses in different cell types, resulting in a variety of favorable biological effects. The aim of this in vitro study was to evaluate the potential biostimulatory effect of low-level Er: YAG laser irradiation on the biological responses of cultured mouse cementoblasts (OCCM-30), including the mitogen-activated protein kinases (MAPKs). METHODS: OCCM-30 cells were exposed to 2940 nm Er: YAG laser irradiation for 15 s at 0.34 W (pulse duration of 100 or 1000 µs, 17 mJ/pulse) at energy densities of 1 or 2 J/cm2. Irradiated and non-irradiated OCCM-30 cells were tested for migration (Scratch assay), proliferation (MTS assay) and functional differentiation (Alizarin Red S assay). Lumican (Lum) and Fibromodulin (Fmod) gene expression, and activation of MAPKs, were assessed by RT-PCR and Western blotting, respectively. RESULTS: Low-level Er: YAG laser irradiation at 2 J/cm2 and pulse duration of 1000 µs resulted in the highest migration rate and proliferation. Moreover, the pulse duration irradiation of 100 µs increased Lum expression. Fmod expression was increased after 1000 µs pulse duration laser stimulation. Low-level Er: YAG laser irradiation increased the mineralization of OCCM-30 cells after 7 days and activated ERK1/2, P38 and JNK signaling. CONCLUSIONS: Low-level Er: YAG laser irradiation induces OCCM-30 cell migration, proliferation and differentiation, and activates the MAPK signaling pathway.


Asunto(s)
Cemento Dental , Láseres de Estado Sólido , Animales , Humanos , Proteínas Quinasas Activadas por Mitógenos , Roedores , Transducción de Señal
14.
J Cell Mol Med ; 25(20): 9710-9723, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34523215

RESUMEN

Hypoxia-induced apoptosis of cementoblasts (OCCM-30) may be harmful to orthodontic treatment. Hypoxia-inducible factor 1-alpha (HIF-1α) mediates the biological effects during hypoxia. Little is known about the survival mechanism capable to counteract cementoblast apoptosis. We aimed to investigate the potential roles of HIF-1α, as well as the protein-protein interactions with ERK1/2, using an in-vitro model of chemical-mimicked hypoxia and adipokines. Here, OCCM-30 were co-stimulated with resistin, visfatin or ghrelin under CoCl2 -mimicked hypoxia. In-vitro investigations revealed that CoCl2 -induced hypoxia triggered activation of caspases, resulting in apoptosis dysfunction in cementoblasts. Resistin, visfatin and ghrelin promoted the phosphorylated ERK1/2 expression in OCCM-30 cells. Furthermore, these adipokines inhibited hypoxia-induced apoptosis at different degrees. These effects were reversed by pre-treatment with ERK inhibitor (FR180204). In cells treated with FR180204, HIF-1α expression was inhibited despite the presence of three adipokines. Using dominant-negative mutants of HIF-1α, we found that siHIF-1α negatively regulated the caspase-8, caspase-9 and caspase-3 gene expression. We concluded that HIF-1α acts as a bridge factor in lengthy hypoxia-induced apoptosis in an ERK1/2-dependent pathway. Gene expressions of the caspases-3, caspase-8 and caspase-9 were shown to be differentially regulated by adipokines (resistin, visfatin and ghrelin). Our study, therefore, provides evidence for the role of ERK1/2 and HIF-1α in the apoptotic response of OCCM-30 cells exposed to CoCl2 -mimicked hypoxia, providing potential new possibilities for molecular intervention in obese patients undergoing orthodontic treatment.


Asunto(s)
Apoptosis/genética , Caspasas/metabolismo , Cemento Dental/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Hipoxia/genética , Hipoxia/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Adipoquinas/metabolismo , Adipoquinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/genética , Cobalto/farmacología , Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Necrosis/tratamiento farmacológico , Necrosis/genética , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal
15.
Front Cell Dev Biol ; 9: 645005, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996803

RESUMEN

We aimed to investigate the molecular effect that adiponectin exerts on cementoblasts especially in the presence of compressive forces. OCCM-30 cells (M. Somerman, NIH, NIDCR, United States) were used. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and western blots were employed to verify if the mRNA and protein levels of adiponectin receptors (AdipoRs), mitogen-activated protein kinase (MAPK), and ß-catenin signaling were influenced by compressive forces or adiponectin. Moreover, siRNAs targeting P38α, JNK1, ERK1, ERK2, and AdipoRs as well as pharmacological MAPK inhibition were performed. We found that compressive forces increase the expression of AdipoRs. Adiponectin and compression up-regulate P38α,JNK1, ERK1, and ERK2 as well as ß-catenin gene expression. Western blots showed that co-stimuli activate the MAPK and ß-catenin signaling pathways. MAPK inhibition alters the compression-induced ß-catenin activation and the siRNAs targeting AdipoRs, P38α, and JNK1, showing the interaction of single MAPK molecules and ß-catenin signaling in response to compression or adiponectin. Silencing by a dominantly negative version of P38α and JNK1 attenuates adiponectin-induced TCF/LEF reporter activation. Together, we found that light compressive forces activate ß-catenin and MAPK signaling pathways. Adiponectin regulates ß-catenin signaling principally by inactivating the GSK-3ß kinase activity. ß-Catenin expression was partially inhibited by MAPK blockade, indicating that MAPK plays a crucial role regulating ß-catenin during cementogenesis. Moreover, adiponectin modulates GSK-3ß and ß-catenin mostly through AdipoR1. P38α is a key connector between ß-catenin, TCF/LEF transcription, and MAPK signaling pathway.

16.
Front Pharmacol ; 11: 585346, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33414717

RESUMEN

Current clinical evidences suggest that circulating Adipokines such as Adiponectin can influence the ratio of orthodontic tooth movement. We aimed to investigate the effect that Adiponectin has on cementoblasts (OCCM-30) and on the intracellular signaling molecules of Mitogen-activated protein kinase (MAPK). We demonstrated that OCCM-30 cells express AdipoR1 and AdipoR2. Alizarin Red S staining revealed that Adiponectin increases mineralized nodule formation and quantitative AP activity in a dose-dependent manner. Adiponectin up-regulates the mRNA levels of AP, BSP, OCN, OPG, Runx-2 as well as F-Spondin. Adiponectin also increases the migration and proliferation of OCCM-30 cells. Moreover, Adiponectin induces a transient activation of JNK, P38, ERK1/2 and promotes the phosphorylation of STAT1 and STAT3. The activation of Adiponectin-mediated migration and proliferation was attenuated after pharmacological inhibition of P38, ERK1/2 and JNK in different degrees, whereas mineralization was facilitated by MAPK inhibition in varying degrees. Based on our results, Adiponectin favorably affect OCCM-30 cell migration, proliferation as well as cementogenesis. One of the underlying mechanisms is the activation of MAPK signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...